Zapata Castano, F.Y.; Gómez Morales, Ó.W.; Álvarez Meza, A.M.; Castellanos Domínguez, C.G.:
Graph Strength for Identification of Pre-training Desynchronization. In: Robles-Bykbaev, V., Mula, J., Reynoso-Meza, G. (eds) Intelligent Technologies: Design and Applications for Society. CITIS 2022. 2023, Lecture Notes in Networks and Systems, vol 607. Springer, Cham. https://doi.org/10.1007/978-3-031-24327-1_4
Tobón-Henao, M.; Álvarez-Meza, A.; Castellanos-Domínguez, G.:
Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills. Sensors 2022, 22, 5771. https://doi.org/10.3390/s22155771
Aguirre-Arango, J.C.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G.:
Feet Segmentation for Regional Analgesia Monitoring Using Convolutional RFF and Layer-Wise Weighted CAM Interpretability. Computation 2023, 11, 113. https://doi.org/10.3390/computation11060113
Álvarez-Meza, A.M.; Torres-Cardona, H.F.; Orozco-Alzate, M.; Pérez-Nastar, H.D.; Castellanos-Dominguez, G.:
Affective Neural Responses Sonified through Labeled Correlation Alignment. Sensors 2023, 23, 5574. https://doi.org/10.3390/s23125574
Blanco-Martínez, C.A.; Cardenas-Peña, D.A.; Holguín-Londoño, M.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A.:
Approximation of Weymouth Equation Using Mathematical Programs with Complementarity Constraints for Natural Gas Transportation. Eng. Proc. 2023, 39, 91. https://doi.org/10.3390/engproc2023039091
Tobón-Henao, M.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G.:
Kernel-Based Regularized EEGNet Using Centered Alignment and Gaussian Connectivity for Motor Imagery Discrimination. Computers 2023, 12, 145. https://doi.org/10.3390/computers12070145
Blanco-Martínez, C.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G.; Cárdenas-Peña, D.A.; Orozco-Gutiérrez, Á.A.:
Optimization of Interconnected Natural Gas and Power Systems Using Mathematical Programs with Complementarity Constraints. Mathematics 2024, 12, 2224. https://doi.org/10.3390/math12142224
Triana-Martinez, J.C.; Álvarez-Meza, A.M.; Gil-González, J.; De Swaef, T.; Fernandez-Gallego, J.A.:
Crop Water Status Analysis from Complex Agricultural Data Using UMAP-Based Local Biplot. Remote Sens. 2024, 16, 2854. https://doi.org/10.3390/rs16152854
Perez-Rosero, D.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G. A:
Regularized Physics-Informed Neural Network to Support Data-Driven Nonlinear Constrained Optimization. Computers 2024, 13, 176. https://doi.org/10.3390/computers13070176
Serna-Serna, W.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.:
Fast Semi-Supervised t-SNE for Transfer Function Enhancement in Direct Volume Rendering-Based Medical Image Visualization. Mathematics 2024, 12, 1885. https://doi.org/10.3390/math12121885
Jimenez-Castaño, C.; Álvarez-Meza, A.; Cárdenas-Peña, D.; Orozco-Gutíerrez, A.; Guerrero-Erazo, J.:
Kre¿n twin support vector machines for imbalanced data classification. 2024, Pattern Recognition Letters, 182, 39-45. https://doi.org/10.1016/
Pastrana-Cortés, J.D.; Gil-Gonzalez, J.; Álvarez-Meza, A.M.; Cárdenas-Peña, D.A.; Orozco-Gutiérrez, Á.A.:
Scalable and Interpretable Forecasting of Hydrological Time Series Based on Variational Gaussian Processes. Water 2024, 16, 2006.
Serna-Serna, W.; de Bodt, C.; Álvarez-Meza, A. M.; Lee, J. A.; Verleysen, M.; Orozco-Gutierrez, A. A.:
Semi-supervised t-SNE with multi-scale neighborhood preservation. 2023, Neurocomputing, 550, 126496. https://doi.org/10.1016/j.neucom.2023.126496
De La Pava Panche, I.; Álvarez-Meza, A. M.; & Orozco-Gutiérrez, Á.:
A Data-Driven Measure of Effective Connectivity Based on Renyi's ¿-Entropy. 2019, Frontiers in Neuroscience, 13, 1277. https://doi.org/10.3389/fnins.2019.01277.
Ramirez, C. et al.:
An Automatic Brain Tumor Segmentation Approach Based on Affinity Clustering. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_89
Castañeda-Gonzalez, J.; Alvarez-Meza, A.; Orozco-Gutierrez, A.:
An Enhanced Sequential Search Feature Selection Based on mRMR to Support FCD Localization. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_57
Pulgarin-Giraldo, J.D.; Alvarez-Meza, A.M.; Van Vaerenbergh, S.; Santamaría, I.; Castellanos-Dominguez, G.:
Analysis and Classification of MoCap Data by Hilbert Space Embedding-Based Distance and Multikernel Learning. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_22
Gómez, V.; Álvarez, A., Herrera, P.; Castellanos, G.; Orozco, A.:
Short Time EEG Connectivity Features to Support Interpretability of MI Discrimination. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_81
Jimenez, C.; Alvarez, A.M.; Orozco, A.:
A Data Representation Approach to Support Imbalanced Data Classification Based on TWSVM. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_7
Valencia, C.K., Álvarez, A., Valencia, E.A., Álvarez, M.A., Orozco, Á.:
Information Potential Variability for Hyperparameter Selection in the MMD Distance. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_33
González, J.G., Álvarez, A.M., Orozco, Á.A.:
Gaussian Processes Regression with Multiple Annotators: When the Annotator Performance Is Not Homogeneous. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_11
Aguilar, R.; Vargas-Cardona, H.D.; Álvarez, A.M., Orozco, Á.A.; Navarro, P.:
Automatic Identification of DBS Parameters from the Volume of Tissue Activated (VTA) Using Support Vector Machines. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_86
De La Pava, I.; Álvarez, A.; Herrera, P.; Castellanos-Dominguez, G.; Orozco, A.:
Gender Effects on an EEG-Based Emotion Level Classification System. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_94
González-Vanegas, W.; Álvarez-Meza, A.; Orozco-Gutiérrez, A.:
An Automatic Approximate Bayesian Computation Approach Using Metric Learning. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-13469-3_2
Jimenez Castaño, C. A.; Álvarez Meza, A. M.; Cardenas Peña, D. A.; Orozco Gutierrez, A. A.; Guerrero Erazo, J. G.:
Imbalanced Classification Krein Spaces Kernel Methods Support Vector Machines. SSRN. 2024, Available at https://ssrn.com/abstract=4661955 or http://dx.doi.org/10.2139/ssrn.4661955.
Fernández-Ramírez, J.L.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A.; Echeverry-Correa, J.D.:
Infinite Gaussian Fisher Vector to Support Video-Based Human Action Recognition. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2019. Lecture Notes in Computer Science(), vol 11845. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-33723-0_4
García-Murillo, D.G.; Álvarez, A.M.; Cárdenas-Peña, D.; Hincapie-Restrepo, W.; Castellanos-Dominguez, G.:
Sparse-Based Feature Selection for Discriminating Between Crops and Weeds Using Field Images. In: Nyström, I., Hernández Heredia, Y., Milián Núñez, V. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2019. Lecture Notes in Computer Science(), vol 11896. 2019, Springer, Cham. https://doi.org/10.1007/978-3-030-33904-3_33
Vargas-Cardona, H. D., Orozco, Á. A., Álvarez, A. M., & Álvarez, M. A.:
Tensor decomposition processes for interpolation of diffusion magnetic resonance imaging. 2019, Expert Systems with Applications, 118, 92-108. https://doi.org/10.1016/j.eswa.2018.10.005.
Mejia-Zuluaga, R. et al.:
Deep Learning Semantic Segmentation of Feet Using Infrared Thermal Images. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence ¿ IBERAMIA 2022. IBERAMIA 2022. 2022, Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_29
Collazos-Huertas, D.F.; Álvarez-Meza, A.M.; Cárdenas-Peña, D.A.; Castaño-Duque, G.A.; Castellanos-Domínguez, C.G.l.:
Posthoc Interpretability of Neural Responses by Grouping Subject Motor Imagery Skills Using CNN-Based Connectivity. Sensors 2023, 23, 2750. https://doi.org/10.3390/s23052750
González-Vanegas, W.; Álvarez-Meza, A.; Hernández-Muriel, J.; Orozco-Gutiérrez, Á:
AKL-ABC: An Automatic Approximate Bayesian Computation Approach Based on Kernel Learning. Entropy 2019, 21, 932. https://doi.org/10.3390/e21100932
García-Murillo, D.G.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G.:
KCS-FCnet: Kernel Cross-Spectral Functional Connectivity Network for EEG-Based Motor Imagery Classification. Diagnostics 2023, 13, 1122. https://doi.org/10.3390/diagnostics13061122
De La Pava Panche, I.; Alvarez-Meza, A. M.; Orozco-Gutierrez, Á.:
A data-driven measure of effective connectivity based on Renyi's ¿-Entropy. Frontiers in Neuroscience, 13, Article 1277. https://doi.org/10.3389/fnins.2019.01277
Hernández-Muriel, J.A.; Bermeo-Ulloa, J.B.; Holguin-Londoño, M.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A.:
Bearing Health Monitoring Using Relief-F-Based Feature Relevance Analysis and HMM. Appl. Sci. 2020, 10, 5170. https://doi.org/10.3390/app10155170
Fernández-Ramírez, J.; Álvarez-Meza, A.; Pereira, E. M.; Orozco-Gutiérrez, A.:
Video-based social behavior recognition based on kernel relevance analysis. 2020, The Visual Computer, 36, 1535¿1547. https://doi.org/10.1007/s00371-019-01754-y
Torres-Valencia, C.; Orozco, Á.; Cárdenas-Peña, D.; Álvarez-Meza, A.; Álvarez, M. A:
Discriminative Multi-Output Gaussian Processes Scheme for Brain Electrical Activity Analysis. Appl. Sci. 2020, 10, 6765. https://doi.org/10.3390/app10196765
Velasquez-Martinez, L.; Caicedo-Acosta, J.; Acosta-Medina, C.; Alvarez-Meza, A.; Castellanos-Dominguez, G.:
Regression Networks for Neurophysiological Indicator Evaluation in Practicing Motor Imagery Tasks. Brain Sci. 2020, 10, 707. https://doi.org/10.3390/brainsci10100707
Jimenez-Castaño, C., Álvarez-Meza, A., & Orozco-Gutierrez, A.:
Enhanced automatic twin support vector machine for imbalanced data classification. 2020, Pattern Recognition, 107, 107442. https://doi.org/10.1016/j.patcog.2020.107442
Collazos-Huertas, D.F.; Álvarez-Meza, A.M.; Acosta-Medina, C.D. et al.:
CNN-based framework using spatial dropping for enhanced interpretation of neural activity in motor imagery classification. Brain Inf. 7, 8 (2020). https://doi.org/10.1186/s40708-020-00110-4
Gil-Gonzalez, J., Orozco-Gutierrez, A., & Alvarez-Meza, A.:
Learning from multiple inconsistent and dependent annotators to support classification tasks. 2021, Neurocomputing, 423, 236-247. https://doi.org/10.1016/j.neucom.2020.10.045
Caicedo-Acosta, J.; Castaño, G.A.; Acosta-Medina, C.; Alvarez-Meza, A.; Castellanos-Dominguez, G.:
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators. Sensors 2021, 21, 1932. https://doi.org/10.3390/s21061932
Valencia-Duque, A.F.; Cárdenas-Peña, D.A.; Álvarez-Meza, A.M.; Orozco-Gutiérrez, Á.A.; Quintero-Riaza, H.F.:
Tdnn-Based Engine In-Cylinder Pressure Estimation from Shaft Velocity Spectral Representation. Sensors 2021, 21, 2186. https://doi.org/10.3390/s21062186
García-Murillo, D.G.; Alvarez-Meza, A.; Castellanos-Dominguez, G.:
Single-Trial Kernel-Based Functional Connectivity for Enhanced Feature Extraction in Motor-Related Tasks. Sensors 2021, 21, 2750. https://doi.org/10.3390/s21082750
Hoyos-Osorio, J., Alvarez-Meza, A., Daza-Santacoloma, G., Orozco-Gutierrez, A., & Castellanos-Dominguez, G.:
Relevant information undersampling to support imbalanced data classification. 2021, Neurocomputing, 436, 136-146. https://doi.org/10.1016/j.neucom.2021.01.033
Gil-González, J.; Valencia-Duque, A.; Álvarez-Meza, A.; Orozco-Gutiérrez, Á.; García-Moreno, A.:
Regularized Chained Deep Neural Network Classifier for Multiple Annotators. Appl. Sci. 2021, 11, 5409. https://doi.org/10.3390/app11125409
Valencia-Marin, C.K.; Pulgarin-Giraldo, J.D.; Velasquez-Martinez, L.F.; Alvarez-Meza, A.M.; Castellanos-Dominguez, G.:
An Enhanced Joint Hilbert Embedding-Based Metric to Support Mocap Data Classification with Preserved Interpretability. Sensors 2021, 21, 4443. https://doi.org/10.3390/s21134443
Collazos, D.; Alvarez-Meza, A.; Castellanos-Dominguez, G.:
Spatial interpretability of time-frequency relevance optimized in motor imagery discrimination using Deep&Wide networks. 2021, Biomedical Signal Processing and Control, 68, 102626. https://doi.org/10.1016/j.bspc.2021.102626
De La Pava Panche, I.; Álvarez-Meza, A.; Herrera Gómez, P.M.; Cárdenas-Peña, D.; Ríos Patiño, J.I.; Orozco-Gutiérrez, Á.:
Kernel-Based Phase Transfer Entropy with Enhanced Feature Relevance Analysis for Brain Computer Interfaces. Appl. Sci. 2021, 11, 6689. https://doi.org/10.3390/app11156689
Collazos-Huertas, D.F.; Velasquez-Martinez, L.F.; Perez-Nastar, H.D.; Alvarez-Meza, A.M.; Castellanos-Dominguez, G.:
Deep and Wide Transfer Learning with Kernel Matching for Pooling Data from Electroencephalography and Psychological Questionnaires. Sensors 2021, 21, 5105. https://doi.org/10.3390/s21155105
J. Gil-González; J. -J. Giraldo; A. M. Álvarez-Meza; A. Orozco-Gutiérrez; M. A. Álvarez:
Correlated Chained Gaussian Processes for Datasets With Multiple Annotators, in IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 8, pp. 4514-4528, Aug. 2023, doi: 10.1109/TNNLS.2021.3116943.
De La Pava Panche, I.; Gómez-Orozco, V.; Álvarez-Meza, A.; Cárdenas-Peña, D.; Orozco-Gutiérrez, Á.:
Estimating Directed Phase-Amplitude Interactions from EEG Data through Kernel-Based Phase Transfer Entropy. Appl. Sci. 2021, 11, 9803. https://doi.org/10.3390/app11219803
Blandon, J.S., Orozco-Gutierrez, A.A., & Alvarez-Meza, A.M.:
An enhanced and interpretable feature representation approach to support shape classification from binary images. 2021, Pattern Recognition Letters, 151, 348-354. https://doi.org/10.1016/j.patrec.2021.08.020
Jimenez-Castaño, C.A.; Álvarez-Meza, A.M.; Aguirre-Ospina, O.D.; Cárdenas-Peña, D.A.; Orozco-Gutiérrez, Á.A.:
Random Fourier Features-Based Deep Learning Improvement with Class Activation Interpretability for Nerve Structure Segmentation. Sensors 2021, 21, 7741. https://doi.org/10.3390/s21227741
Collazos-Huertas, D.F.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G.:
Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. Appl. Sci. 2022, 12, 1695. https://doi.org/10.3390/app12031695
Triana-Martinez, J.C.; Gil-González, J.; Fernandez-Gallego, J.A.; Álvarez-Meza, A.M.; Castellanos-Dominguez, C.G.:
Chained Deep Learning Using Generalized Cross-Entropy for Multiple Annotators Classification. Sensors 2023, 23, 3518. https://doi.org/10.3390/s23073518
Cardona-Álvarez, Y.N.; Álvarez-Meza, A.M.; Cárdenas-Peña, D.A.; Castaño-Duque, G.A.; Castellanos-Dominguez, G.:
A Novel OpenBCI Framework for EEG-Based Neurophysiological Experiments. Sensors 2023, 23, 3763. https://doi.org/10.3390/s23073763
Tobar, A. D.; Aguirre, J. C.; Cárdenas-Peña, D. A.; Álvarez-Meza, A. M.; Castellanos-Dominguez, C. G.:
Hippocampus Segmentation using Patch-based Representation and ROC Label Enhancement. In Proceedings of the Conference (2023).